Ectomycorrhizal fungal diversity, tree diversity and root nutrient relations in a mixed Central European forest.
نویسندگان
چکیده
Knowledge is limited about whether root nutrient concentrations are affected by mixtures of tree species and interspecific root competition. The goal of this field study was to investigate root nutrient element concentrations in relation to root and ectomycorrhizal (EM) diversity in six different mixtures of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia sp.) in an old-growth, undisturbed forest ecosystem. Root biomass and nutrient concentrations per tree taxon as well as the abundance and identity of all EM fungi were determined in soil cores of a volume of 1 L (r=40 mm, depth=200 mm). Stand-level nutrient concentrations in overall root biomass and H' (Shannon-Wiener diversity) were obtained by pooling the data per stand. At stand level, Shannon H' for roots and aboveground tree species abundance were correlated. H' for roots and EM fungi were not correlated because of the contribution of ash roots that form only arbuscular mycorrhizal but no EM associations. Nutrient element concentrations in roots showed taxon-related differences and increased in the following order: beech ≤ lime < ash with the exception of calcium (Ca), which was lower in ash. Stand-level concentrations of Ca, magnesium, potassium and sulfur in roots increased with increasing tree diversity because of two effects: increasing contribution of ash roots to the mixture and increasing Ca accumulation in beech roots with increasing root diversity. On a small scale, increasing root diversity, but not EM diversity, was correlated with decreasing P concentrations in beech roots pointing to interspecific tree competition. Nitrogen (N) concentrations of beech roots were unaltered in relation to root and EM diversity. Opposing behavior was observed for lime and ash: the N concentrations in lime roots increased, whereas those in ash roots decreased with increasing EM diversity in a given soil volume. This suggests that EM diversity facilitates N acquisition of lime roots at the expense of non-EM ash.
منابع مشابه
Ectomycorrhizal diversity enhances growth and nitrogen fixation of Acacia mangium seedlings
Increasing interest has been given so far to the role of mycorrhizal symbiosis on plant diversity and ecosystem productivity. However much remains unknown about the effect of ectomycorrhizal fungal diversity on plant growth and rhizobial symbiosis. The purpose of this study is to investigate the influence of ectomycorrhizal diversity on root nodulation and plant nutrient uptake during plant gro...
متن کاملFungal disease incidence along tree diversity gradients depends on latitude in European forests.
European forests host a diversity of tree species that are increasingly threatened by fungal pathogens, which may have cascading consequences for forest ecosystems and their functioning. Previous experimental studies suggest that foliar and root pathogen abundance and disease severity decrease with increasing tree species diversity, but evidences from natural forests are rare. Here, we tested w...
متن کاملDiversity and Spatial Structure of Belowground Plant–Fungal Symbiosis in a Mixed Subtropical Forest of Ectomycorrhizal and Arbuscular Mycorrhizal Plants
Plant-mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community stru...
متن کاملThe effects of forestry practices on ectomycorrhizal fungal communities and seedling establishment Integrated studies on biodiversity, podzol profile, clear-cut logging impacts and seedling inoculation
Ectomycorrhizal fungi form symbioses with all the major tree species in the boreal forest zone and they are of key importance in nutrient acquisition, plant protection against root pathogens and drought stress. Their diversity and the impacts of forestry practises on these highly important organisms is therefore of great interest. The aim of the study was to describe ectomycorrhizal biodiversit...
متن کاملEctomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a field-based tree experiment.
Exploring the link between above- and belowground biodiversity has been a major theme of recent ecological research, due in large part to the increasingly well-recognized role that soil microorganisms play in driving plant community processes. In this study, we utilized a field-based tree experiment in Minnesota, USA, to assess the effect of changes in plant species richness and phylogenetic di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 31 5 شماره
صفحات -
تاریخ انتشار 2011